Package: lasR (via r-universe)

September 16, 2024
Type Package
Version 0.10.2
Title Fast and Pipeable Airborne LiDAR Data Tools

Description Fast and pipeable airborne lidar processing tools.
Read/write 'las' and 'laz' files, computation of metrics in
area based approach, point filtering, normalization, individual
tree segmentation and other manipulations in a powerful and
versatile processing chain.

URL https://github.com/r-1lidar/lasR

BugReports https://github.com/r-1lidar/lasR/issues
License GPL-3 + file LICENSE

Depends R (>= 3.6.0)

Imports methods, utils, stats

Suggests knitr, rmarkdown, sf, terra, testthat (>= 3.0.0),
RoxygenNote 7.3.1

SystemRequirements C++17, GDAL (>= 2.2.3), GEOS (>= 3.4.0), PROJ (>=
4.9.3), sqlite3, GNU make

Encoding UTF-8

Language en-US

Config/testthat/edition 3

VignetteBuilder knitr

Repository https://r-lidar.r-universe.dev

RemoteUrl https://github.com/r-lidar/lasR
RemoteRef HEAD

RemoteSha ab345{06f9df34629c964d2bf68396ec1578826e

https://github.com/r-lidar/lasR
https://github.com/r-lidar/lasR/issues

2 Contents

Contents
lasR-package e 3
add_extrabytes e 3
add_rgbo 4
callback e 5
chm . . L 7
classify _with_csf 7
classify with_ivf 9
classify _ with_sor. e 10
delete_points Lo 10
dtm . e 11
EXEC v v e e e e e e e e e e e e e s e e 12
filters e e e e 13
filter_ with_grid 14
focal e 15
geometry features 16
hulls e e e 17
load _raster 18
local maximum e 18
metric_engine oL e e e e 20
multithreading L L 21
normalize e e e e e 23
pit_fill . o 23
rasterize L e e 25
reader_las e e 27
region GTowing 28
sampling_voxel L 30
SEE_CIS . . o o o e e e e e e e e e e e 31
set_exec_options L 31
sort_pointso 33
stop_if outside. 33
SUMIMATISE « . v v v v v v v o e e e e e e e e e e e 34
temporary_ fileso 35
1700 = 36
transform_ with 36
triangulate Lo 37
write_las e 38
write_lax L e e 39
WIIte__VDC . . o o o e e 40

Index 42

lasR-package 3

lasR-package lasR: airborne LiDAR for forestry applications

Description

lasR provides a set of tools to process efficiently airborne LiDAR data in forestry contexts.
The package works with .las or .laz files. The toolbox includes algorithms for DSM, CHM,
DTM, ABA, normalisation, tree detection, tree segmentation, tree delineation, colouriza-
tion, validation and other tools, as well as a processing engine to process broad LiDAR
coverage split into many files efficiently.

Author(s)

Maintainer: Jean-Romain Roussel <info@r-lidar.com> [copyright holder]
Other contributors:
o Martin Isenburg (Is the author of the included LASlib and LASzip libraries) [copyright
holder]
» Benoit St-Onge (Is the author of the included ’chm__prep’ function) [copyright holder]
o Niels Lohmann (Is the author of the included json parser) [copyright holder]

» Volodymyr Bilonenko (Is the author of the included delaunator triangulation) [copy-
right holder]

e State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing Science
and Engineering, Beijing Normal University (Is the copyright holder of the included
CSF) [copyright holder]
See Also
Useful links:

e https://github.com/r-1lidar/lasR
e Report bugs at https://github.com/r-lidar/lasR/issues

add_extrabytes Add attributes to a LAS file

Description

According to the LAS specifications, a LAS file contains a core of defined attributes, such as
XYZ coordinates, intensity, return number, and so on, for each point. It is possible to add
supplementary attributes. This stages adds an extra bytes attribute to the points. Values
are zeroed: the underlying point cloud is edited to support a new extrabyte attribute. This
new attribute can be populated later in another stage

https://github.com/r-lidar/lasR
https://github.com/r-lidar/lasR/issues
https://www.asprs.org/a/society/committees/standards/LAS_1_4_r13.pdf

4 add__rgb

Usage

add_extrabytes(data_type, name, description, scale = 1, offset = 0)

Arguments
data_type character. The data type of the extra bytes attribute. Can be "uchar”,
”char”, ”ushort”; “short”, "uint”, ”int”, "uint64”, ”int64”, "float”, "dou-
ble”.
name character. The name of the extra bytes attribute to add to the file.

description character. A short description of the extra bytes attribute to add to the
file (32 characters).

scale, offset numeric. The scale and offset of the data. See LAS specification.

Value

This stage transforms the point cloud in the pipeline. It consequently returns nothing.

Examples

f <- system.file("extdata", "Example.las", package = "lasR")
fun <- function(data) { data$RAND <- runif(nrow(data), O, 100); return(data) }
pipeline <- reader_las() +
add_extrabytes("float", "RAND", "Random numbers") +
callback(fun, expose = "xyz")
exec(pipeline, on = f)

add_rgb Add RGB attributes to a LAS file

Description

Modifies the LAS format to convert into a format with RGB attributes. Values are zeroed:
the underlying point cloud is edited to be transformed in a format that supports RGB.
RGB can be populated later in another stage. If the point cloud already has RGB, nothing
happens, RGB values are preserved.

Usage

add_rgb()

Value

This stage transforms the point cloud in the pipeline. It consequently returns nothing.

callback 5

Examples

f <- system.file("extdata", "Example.las", package="lasR")

pipeline <- add_rgb() + write_las()
exec(pipeline, on = f)

callback Call a user-defined function on the point cloud

Description

Call a user-defined function on the point cloud. The function receives a data.frame with
the point cloud. Its first input must be the point cloud. If the function returns anything
other than a data.frame with the same number of points, the output is stored and returned
at the end. However, if the output is a data.frame with the same number of points, it
updates the point cloud. This function can, therefore, be used to modify the point cloud
using a user-defined function. The function is versatile but complex. A more comprehensive
set of examples can be found in the online tutorial.

Usage
callback(fun, expose = "xyz", ..., drop_buffer = FALSE, no_las_update = FALSE)
Arguments
fun function. A user-defined function that takes as first argument a data.frame
with the exposed point cloud attributes (see examples).
expose character. Expose only attributes of interest to save memory (see details).

parameters of function fun
drop_buffer bool. If false, does not expose the point from the buffer.

no_las_update bool. If the user-defined function returns a data.frame, this is supposed
to update the point cloud. Can be disabled.

Details

In lasR, the point cloud is not exposed to R in a data.frame like in lidR. It is stored
internally in a C++ structure and cannot be seen or modified directly by users using R
code. The callback function is the only stage that allows direct interaction with the point
cloud by copying it temporarily into a data.frame to apply a user-defined function.

expose: the ’expose’ argument specifies the data that will actually be exposed to R. For
example, 'xyzia’ means that the x, y, and z coordinates, the intensity, and the scan angle
will be exposed. The supported entries are t - gpstime, a - scan angle, i - intensity, n -
number of returns, r - return number, c - classification, s - synthetic flag, k - keypoint flag,
w - withheld flag, o - overlap flag (format 64), u - user data, p - point source ID, e - edge of
flight line flag, d - direction of scan flag, R - red channel of RGB color, G - green channel of

https://r-lidar.github.io/lasR/articles/tutorial.html#callback

6 callback

RGB color, B - blue channel of RGB color, N - near-infrared channel, C - scanner channel
(format 64) Also numbers from 1 to 9 for the extra bytes data numbers 1 to 9. 'E’ enables
all extra bytes to be loaded. "*’ is the wildcard that enables everything to be exposed from
the LAS file.

Value

This stage transforms the point cloud in the pipeline. It consequently returns nothing.

See Also

write las

Examples

f <- system.file("extdata", "Topography.las", package = "lasR")

There is no function in lasR to read the data in R. Let's create one
read_las <- function(f)
{

load <- function(data) { return(data) }

read <- reader_las()

call <- callback(load, expose = "xyzi", no_las_update = TRUE)

return (exec(read + call, on = f))

}
las <- read_las(f)
head(las)

convert_intensity_in_range <- function(data, min, max)
{
i <- data$Intensity
i <= (4 - min(i)) / (max(i) - min(i))) * (max - min) + min
i[i < min] <- min
i[i > max] <- max
data$Intensity <- as.integer(i)
return(data)

}

read <- reader_las()

call <- callback(convert_intensity_in_range, expose = "i", min = 0, max = 255)
write <- write_las()

pipeline <- read + call + write

ans <- exec(pipeline, on = f)

las <- read_las(ans)
head(las)

chm 7

chm Canopy Height Model

Description

Create a Canopy Height Model using triangulate and rasterize.

Usage
chm(res = 1, tin = FALSE, ofile = tempfile(fileext = ".tif"))
Arguments
res numeric. The resolution of the raster.
tin bool. By default the CHM is a point-to-raster based methods i.e. each
pixel is assigned the elevation of the highest point. If tin = TRUE the
CHM is a triangulation-based model. The first returns are triangulated
and interpolated.
ofile character. Full outputs are always stored on disk. If ofile = "" then
the stage will not store the result on disk and will return nothing. It will
however hold partial output results temporarily in memory. This is useful
for stage that are only intermediate stage.
See Also

triangulate rasterize

Examples

f <- system.file("extdata", "Topography.las", package="lasR")
pipeline <- reader_las() + chm()
exec(pipeline, on = f)

classify_with_csf Classify ground points

Description

Classify points using the Cloth Simulation Filter by Zhang et al. (2016) (see references)
that relies on the authors’ original source code. If the point cloud already has ground
points, the classification of the original ground point is set to zero. This stage modifies the
point cloud in the pipeline but does not produce any output.

8 classify _with_ csf
Usage
classify_with_csf(
slope_smooth = FALSE,
class_threshold = 0.5,
cloth_resolution = 0.5,
rigidness 1L,
iterations = 500L,
time_step = 0.65,
class = 2L,
filter = "-keep_last"
)
Arguments
slope_smooth logical. When steep slopes exist, set this parameter to TRUE to reduce
errors during post-processing.
class_threshold
scalar. The distance to the simulated cloth to classify a point cloud into
ground and non-ground. The default is 0.5.
cloth_resolution
scalar. The distance between particles in the cloth. This is usually set to
the average distance of the points in the point cloud. The default value
is 0.5.
rigidness integer. The rigidness of the cloth. 1 stands for very soft (to fit rugged
terrain), 2 stands for medium, and 3 stands for hard cloth (for flat terrain).
The default is 1.
iterations integer. Maximum iterations for simulating cloth. The default value is
500. Usually, there is no need to change this value.
time_step scalar. Time step when simulating the cloth under gravity. The default
value is 0.65. Usually, there is no need to change this value. It is suitable
for most cases.
Unused
class integer. The classification to attribute to the points. Usually 2 for ground
points.
filter the filter’ argument allows filtering of the point-cloud to work with points
of interest. The available filters are those from LASIlib and can be found
by running filter usage. For a given stage when a filter is applied, only
the points that meet the criteria are processed. The most common strings
are "-keep_ first”, ”-keep_ class 2”, "drop_z_below 2”. For more details
see filters.
Value

This stage transforms the point cloud in the pipeline. It consequently returns nothing.

classify _with__ivf 9

References

W. Zhang, J. Qi*, P. Wan, H. Wang, D. Xie, X. Wang, and G. Yan, “An Easy-to-Use
Airborne LiDAR Data Filtering Method Based on Cloth Simulation,” Remote Sens., vol.
8, no. 6, p. 501, 2016. (http://www.mdpi.com/2072-4292/8/6/501 /htm)

Examples

f <- system.file("extdata", "Topography.las", package="lasR")
pipeline = classify_with_csf(TRUE, 1 ,1, time_step = 1) + write_las()
ans = exec(pipeline, on = f, progress = TRUE)

classify_with_ivf Classify noise points

Description

Classify points using Isolated Voxel Filter (IVF). The stage identifies points that have only
a few other points in their surrounding 3 x 3 x 3 = 27 voxels and edits the points to assign
a target classification. Used with class 18, it classifies points as noise. This stage modifies
the point cloud in the pipeline but does not produce any output.

Usage

classify_with_ivf(res = 5, n = 6L, class = 18L)

Arguments
res numeric. Resolution of the voxels.
n integer. The maximal number of ’other points’ in the 27 voxels.
class integer. The class to assign to the points that match the condition.
Value

This stage transforms the point cloud in the pipeline. It consequently returns nothing.

10 delete__points

classify_with_sor Classify noise points

Description

Classify points using the Statistical Outliers Removal (SOR) methods first described in
the PCL library and also implemented in CloudCompare (see references). For each point,
it computes the mean distance to all its k-nearest neighbors. The points that are farther
than the average distance plus a number of times (multiplier) the standard deviation are
considered noise.

Usage

classify_with_sor(k = 8, m = 6, class = 18L)

Arguments
k numeric. The number of neighbours
m numeric. Multiplier. The maximum distance will be: avg distance + m *
std deviation
class integer. The class to assign to the points that match the condition.
Value

This stage transforms the point cloud in the pipeline. It consequently returns nothing.

delete_points Filter and delete points

Description

Remove some points from the point cloud. This stage modifies the point cloud in the
pipeline but does not produce any output.

Usage
delete_points(filter = "")
Arguments
filter the “filter’ argument allows filtering of the point-cloud to work with points

of interest. The available filters are those from LASIib and can be found
by running filter_usage. For a given stage when a filter is applied, only
the points that meet the criteria are processed. The most common strings
are "-keep_ first”, ”-keep_ class 2”, "drop_z_below 2”. For more details
see filters.

dtm 11

Value

This stage transforms the point cloud in the pipeline. It consequently returns nothing.

Examples

f <- system.file("extdata", "Megaplot.las", package="lasR")
read <- reader_las()
filter <- delete_points(keep_z_above(4))

pipeline <- read + summarise() + filter + summarise()
exec(pipeline, on = f)

dtm Digital Terrain Model

Description

Create a Digital Terrain Model using triangulate and rasterize.

Usage

dtm(res = 1, add_class = NULL, ofile = temptif())

Arguments
res numeric. The resolution of the raster.
add_class integer. By default it triangulates using ground and water points (classes
2 and 9). It is possible to provide additional classes.
ofile character. Full outputs are always stored on disk. If ofile = "" then
the stage will not store the result on disk and will return nothing. It will
however hold partial output results temporarily in memory. This is useful
for stage that are only intermediate stage.
See Also

triangulate rasterize

Examples

f <- system.file("extdata", "Topography.las", package="lasR")
pipeline <- reader_las() + dtm()
exec(pipeline, on = f)

12

exec

exec

Process the pipeline

Description

Process the pipeline. Every other functions of the package do nothing. This function must
be called on a pipeline in order to actually process the point-cloud. To process in parallel
using multiple cores, refer to the multithreading page.

Usage
exec(pipeline, on, with = NULL, ...)
Arguments
pipeline a pipeline. A serie of stages called in order
on Can be the paths of the files to use, the path of the folder in which
the files are stored, the path to a virtual point cloud file or a data.frame
containing the point cloud. It supports also a LAScatalog or a LAS objects
from 1idR.
with list. A list of options to control how the pipeline is executed. This includes
options to control parallel processing, progress bar display, tile buffering
and so on. See set__exec_ options for more details on the available options.
The processing options can be explicitly named and passed outside the
with argument. See set_exec_options
See Also

multithreading set__exec_ options

Examples

Not run:

f <- pasteO(system.file(package="lasR"), "/extdata/bcts/")
f <- list.files(f, pattern = "(?7i)\\.la(s|z)$", full.names = TRUE)

read <- reader_las()

tri <- triangulate(15)

dtm <- rasterize(5, tri)

Imf <- local_maximum(5)

met <- rasterize(2, "imean")

pipeline <- read + tri + dtm + 1mf + met

ans <- exec(pipeline, on = f, with = list(progress = TRUE))

End(Not run)

https://www.lutraconsulting.co.uk/blog/2023/06/08/virtual-point-clouds/

filters 13

filters Point filters

Description

lasR uses LASlib/LASzip, the library developed by Martin Isenburg to read and write
LAS/LAZ files. Thus, the flags that are available in LAStools are also available in lasR.
Filters are strings to put in the filter arguments of the lasR algorithms. The list of
available strings is accessible with filter_usage. For convenience, the most useful filters
have an associated function that returns the corresponding string.

Usage

keep_class(x)
drop_class(x)
keep_first()
drop_first()
keep_ground ()
keep_ground_and_water ()
drop_ground ()
keep_noise()
drop_noise()
keep_z_above (x)
drop_z_above (x)
keep_z_below(x)
drop_z_below(x)
drop_duplicates()
filter_usage()

S3 method for class 'laslibfilter'
print(x, ...)

S3 method for class 'laslibfilter'

14 filter _with_grid

el + e2
Arguments
X numeric or integer as a function of the filter used.
Unused.
el, e2 lasR objects.
Examples

f <- system.file("extdata", "Topography.las", package="lasR")
filter_usage()

gnd = keep_class(c(2,9))

reader_las(gnd)

triangulate(filter = keep_ground())

rasterize(1l, "max", filter = "-drop_z_below 5")
filter_with_grid Select highest or lowest points
Description

Select and retained only highest or lowest points per grid cell

Usage
filter_with_grid(res, operator = "min", filter = "")
Arguments
res numeric. The resolution of the grid
operator string. Can be min or max to retain lowest or highest points
filter the "filter’ argument allows filtering of the point-cloud to work with points

of interest. The available filters are those from LASIlib and can be found
by running filter usage. For a given stage when a filter is applied, only
the points that meet the criteria are processed. The most common strings
are "-keep_ first”, 7-keep_ class 2”, "drop_z_below 2”. For more details
see filters.

focal 15

focal Calculate focal ("moving window”) values for each cell of a raster

Description

Calculate focal ("moving window”) values for each cell of a raster using various functions.
NAs are always omitted; thus, this stage effectively acts as an NA filler. The window is
always circular. The edges are handled by adjusting the window.

Usage
focal(raster, size, fun = "mean", ofile = temptif())
Arguments
raster LASRalgorithm. A stage that produces a raster.
size numeric. The window size **in the units of the point cloud**, not in
pixels. For example, 2 means 2 meters or 2 feet, not 2 pixels.
fun string. Function to apply. Supported functions are 'mean’, 'median’,
‘min’, 'max’, 'sum’.
ofile character. Full outputs are always stored on disk. If ofile = "" then
the stage will not store the result on disk and will return nothing. It will
however hold partial output results temporarily in memory. This is useful
for stage that are only intermediate stage.
Value

This stage produces a raster. The path provided to ‘ofile‘ is expected to be “tif* or any
other format supported by GDAL.

Examples

f <- system.file("extdata", "Topography.las", package = "lasR")

chm = rasterize(2, "zmax")

chm2 = lasR:::focal(chm, 8, fun = "mean"
chm3 = lasR:::focal(chm, 8, fun = "max")
pipeline <- reader_las() + chm + chm2 + chm2
ans = exec(pipeline, on = f)

terra::plot(ans[[1]])
terra::plot(ans[[2]])
terra::plot(ans[[3]])

16 geometry_features

geometry_features Compute pointwise geometry features

Description

Compute pointwise geometry features based on local neighborhood. Each feature is added
into an extrabyte attribute. The names of the extrabytes attributes (if recorded) are
coeff00, coeff01, coeff02 and so on, lambdal, lambda2, lambda3, anisotropy, planarity,
sphericity, linearity, omnivariance, curvature, eigensum, angle, normalX, normaly,
normalZ (recorded in this order). There is a total of 23 attributes that can be added. It
is strongly discouraged to use them all. All the features are recorded with single precision
floating points yet computing them all will triple the size of the point cloud. This stage
modifies the point cloud in the pipeline but does not produce any output.

Usage

geometry_features(k, r, features = "")

Arguments

k, r integer and numeric respectively for k-nearest neighbours and radius of
the neighborhood sphere. If k is given and r is missing, computes with the
knn, if r is given and k is missing computes with a sphere neighborhood,
if k and r are given computes with the knn and a limit on the search
distance.

features String. Geometric feature to export. Each feature is added into an ex-
trabyte attribute. Use ’C’ for the 9 principal component coefficients, 'E’
for the 3 eigenvalues of the covariance matrix, ’a’ for anisotropy, 'p’ for
planarity, ’s’ for sphericity, ’1’ for linearity, 'o’ for omnivariance, ’c’ for
curvature, ’e’ for the sum of eigenvalues, i’ for the angle (inclination in
degrees relative to the azimuth), and 'n’ for the 3 components of the
normal vector. Notice that the uppercase labeled components allow com-
puting all the lowercase labeled components. Default is ””. In this case,
the singular value decomposition is computed but serves no purpose. The
order of the flags does not matter and the features are recorded in the
order mentioned above.

Value

This stage transforms the point cloud in the pipeline. It consequently returns nothing.

References

Hackel, T., Wegner, J. D., & Schindler, K. (2016). Contour detection in unstructured
3D point clouds. In Proceedings of the IEEE conference on computer vision and pattern
recognition (pp. 1610-1618).

hulls 17

Examples

f <- system.file("extdata", "Example.las", package = "lasR")
pipeline <- geometry_features(8, features = "pi") + write_las()
ans <- exec(pipeline, on = f)

hulls Contour of a point cloud

Description

This stage uses a Delaunay triangulation and computes its contour. The contour of a strict
Delaunay triangulation is the convex hull, but in lasR, the triangulation has a max_edge
argument. Thus, the contour might be a convex hull with holes. Used without triangulation
it returns the bouding box of the points.

Usage
hulls(mesh = NULL, ofile = tempgpkg())

Arguments
mesh NULL or LASRalgorithm. A triangulate stage. If NULL take the
bounding box of the header of each file.
ofile character. Full outputs are always stored on disk. If ofile = "" then
the stage will not store the result on disk and will return nothing. It will
however hold partial output results temporarily in memory. This is useful
for stage that are only intermediate stage.
Value

This stage produces a vector. The path provided to ‘ofile‘ is expected to be ‘gpkg‘ or
any other format supported by GDAL. Vector stages may produce geometries with Z co-
ordinates. Thus, it is discouraged to store them in formats with no 3D support, such as
shapefiles.

See Also

triangulate

Examples

f <- system.file("extdata", "Topography.las", package = "lasR")
read <- reader_las()

tri <- triangulate(20, filter = keep_ground())

contour <- hulls(tri)

pipeline <- read + tri + contour

ans <- exec(pipeline, on = f)

plot(ans)

18 local maximum

load_raster Load a raster for later use

Description

Load a raster from a disk file for later use. For example, load a DTM to feed the trans-
form_ with stage or load a CHM to feed the pit_fill stage. The raster is never loaded
entirely. Internally, only chunks corresponding to the currently processed point cloud are
loaded. Be careful: internally, the raster is read as float no matter the original datatype.

Usage

load_raster(file, band = 1L)

Arguments

file character. Path to a raster file.

band integer. The band to load. It reads and loads only a single band.
Examples

r <- system.file("extdata/bcts", "bcts_dsm_bm.tif", package = "lasR")
<- pasteO(system.file(package = "lasR"), "/extdata/bcts/")
f <- list.files(f, pattern = "(?7i)\\.la(s|z)$", full.names = TRUE)

Hh

In the following pipeline, neither load_raster nor pit_fill process any points.

The internal engine is capable of knowing that, and the LAS files won't actually be
read. Yet the raster r will be processed by chunk following the LAS file pattern.
rr <- load_raster(r)

pipeline <- rr + pit_£fill(rr)

ans <- exec(pipeline, on = f, verbose = FALSE)

local_maximum Local Mazximum

Description

The Local Maximum stage identifies points that are locally maximum. The window size
is fixed and circular. This stage does not modify the point cloud. It produces a derived
product in vector format. The function local_maximum_raster applies on a raster instead
of the point cloud

local maximum

Usage

local_maximum(

ws,
min_height

filter = "",

19

2,

ofile = tempgpkg(),
use_attribute = "Z",
record_attributes = FALSE

local_maximum_raster(

raster,
ws,
min_height

filter = "",

2,

ofile = tempgpkg()

Arguments

ws

min_height

filter

ofile

use_attribute

numeric. Diameter of the moving window used to detect the local maxima
in the units of the input data (usually meters).

numeric. Minimum height of a local maximum. Threshold below which
a point cannot be a local maximum. Default is 2.

the "filter’ argument allows filtering of the point-cloud to work with points
of interest. The available filters are those from LASIlib and can be found
by running filter usage. For a given stage when a filter is applied, only
the points that meet the criteria are processed. The most common strings

are 7-keep_ first”, ”-keep_ class 27, "drop_z_below 2”. For more details
see filters.
character. Full outputs are always stored on disk. If ofile = "" then

the stage will not store the result on disk and will return nothing. It will
however hold partial output results temporarily in memory. This is useful
for stage that are only intermediate stage.

character. By default the local maximum is performed on the coordinate
Z. Can also be the name of an extra bytes attribute such as "HAG’ if it
exists. Can also be 'Intensity’ but there is probably no use case for that
one.

record_attributes

raster

Value

The coordinates XYZ of points corresponding to the local maxima are
recorded. It is also possible to record the attributes of theses points such
as the intensity, return number, scan angle and so on.

LASRalgorithm. A stage that produces a raster.

This stage produces a vector. The path provided to ‘ofile‘ is expected to be ‘gpkg‘ or
any other format supported by GDAL. Vector stages may produce geometries with Z co-

20

metric__engine

ordinates. Thus, it is discouraged to store them in formats with no 3D support, such as
shapefiles.

Examples

f <- system.file("extdata", "MixedConifer.las", package = "lasR")
read <- reader_las()

Imf <- local_maximum(5)

ans <- exec(read + 1lmf, on = f)

ans

chm <- rasterize(1l, "max")

1mf <- local_maximum_raster (chm, 5)

ans <- exec(read + chm + 1lmf, on = f)

terra::plot(ans$rasterize)

plot(ans$local_maximum, add = T, pch = 19)

metric_engine Metric engine

Description

The metric engine is an internal tool that allow to derive any metric from a set of points
by parsing a string. It is used by rasterize, summarise as well as other functions. Each
string is composed of two parts separated by an underscore. The first part is the attribute
on which the metric must be computed (e.g., z, intensity, classification). The second part
is the name of the metric (e.g., mean, sd, cv). A string thus typically looks like "z_max",
"intensity_min", "z_mean", "classification_mode". For more details see the sections
"Attribute’ and "Metrics’ respectively.

Details

Be careful: the engine supports any combination of attribute_metric strings. While they
are all computable, they are not all meaningful. For example, c_mode makes sense but not
z_mode. Also, all metrics are computed with 32-bit floating point accuracy, so x_mean or
y_sum might be slightly inaccurate, but anyway, these metrics are not supposed to be useful.

Attribute

The available attributes are accessible via a single letter or via their lowercase name: t -
gpstime, a - angle, i - intensity, n - numberofreturns, r - returnnumber, c - classification, s -
synthetic, k - keypoint, w - withheld, o - overlap (format 6+), u - userdata, p - pointsourceid,
e - edgeofflightline, d - scandirectionflag, R - red, G - green, B - blue, N - nir.

Be careful to the typos: attributes are non failing features. If the attribute does not exist
NaN is returned. Thus intesity_mean return NaN rather than failing.

multithreading 21

Metrics

The available metric names are: count, max, min, mean, median, sum, sd, cv, pX (percentile),
aboveX, and mode. Some metrics have an attribute + name + a parameter X, such as pX
where X can be substituted by a number. Here, z_pX represents the Xth percentile; for
instance, z_p95 signifies the 95th percentile of z. z_aboveX corresponds to the percentage
of points above X (sometimes called canopy cover).

It is possible to call a metric without the name of the attribute. In this case, z is the
default. e.g. mean equals z_mean

Extrabytes attribute

The core attributes are x, y, z, classification, intensity, and so on. Some point clouds
have extra attributes called extrabytes attributes. In this case, metrics can be derived the
same way using the names of the extra attributes. Be careful of typos. The attributes are
not checked internally because of the extrabytes attributes. For example, if a user requests:
ntensity_mean, this could be a typo or the name of an extra attribute. Because extrabytes
are never failing, ntensity_mean will return NaN rather than an error.

Examples

metrics = c¢("z_max", "i_min", "r_mean", "n_median", "z_sd", "c_sd", "t_cv", "u_sum", "z_p95")
f <- system.file("extdata", "Example.las", package="lasR")

p <- summarise(metrics = metrics)

r <- rasterize(5, operators = metrics)

ans <- exec(ptr, on = f)

ans$summary$metrics

ans$rasterize

multithreading Parallel processing tools

Description

lasR uses OpenMP to paralellize the internal C++ code. set_parallel_strategy() glob-
ally changes the strategy used to process the point clouds. sequential (), concurrent_files(),
concurrent_points(), and nested () are functions to assign a parallelization strategy (see
Details). has_omp_support () tells you if the 1lasR package was compiled with the support
of OpenMP which is unlikely to be the case on MacOS.

Usage

set_parallel_strategy(strategy)
unset_parallel_strategy()

get_parallel_strategy()

22

multithreading

ncores()

half cores()

sequential ()

concurrent_files(ncores = half_cores())
concurrent_points(ncores = half_cores())
nested(ncores = ncores()/4L, ncores2 = 2L)

has_omp_support ()

Arguments
strategy An object returned by one of sequential (), concurrent_points(), concurrent_files()
or nested().
ncores integer. Number of cores.
ncores?2 integer. Number of cores. For nested strategy ncores is the number of
concurrent files and ncores?2 is the number of concurrent points.
Details

There are 4 strategies of parallel processing:

sequential No parallelization at all: sequential ()

concurrent-points Point cloud files are processed sequentially one by one. Inside the
pipeline, some stages are parallelized and are able to process multiple points simulta-
neously. Not all stages are natively parallelized. E.g. concurrent_points(4)

concurrent-files Files are processed in parallel. Several files are loaded in memory and
processed simultaneously. The entire pipeline is parallelized, but inside each stage, the
points are processed sequentially. E.g. concurrent_files(4)

nested Files are processed in parallel. Several files are loaded in memory and processed
simultaneously, and inside some stages, the points are processed in parallel. E.g.
nested(4,2)

concurrent-files is likely the most desirable and fastest option. However, it uses more
memory because it loads multiple files. The default is concurrent_points(half_cores())
and can be changed globally using e.g. set_parallel_strategy(concurrent_files(4))

Examples

Not run:
f <- pasteO(system.file(package="lasR"), "/extdata/bcts/")
f <- list.files(f, pattern = "(?7i)\\.la(s|z)$", full.names = TRUE)

pipeline <- reader_las() + rasterize(2, "imean"

normalize 23

ans <- exec(pipeline, on = f, progress = TRUE, ncores = concurrent_files(4))

set_parallel_strategy(concurrent_files(4))
ans <- exec(pipeline, on = f, progress = TRUE)

End (Not run)

normalize Normalize the point cloud

Description

Normalize the point cloud using triangulate and transform_ with. It triangulates the ground
points and then applies transform_with to linearly interpolate the elevation of each point
within each triangle.

Usage

normalize(extrabytes = FALSE)

Arguments
extrabytes bool. If FALSE the coordinate Z of the point cloud is modified and
becomes the height above ground (HAG). If TRUE the coordinate Z is
not modified and a new extrabytes attribute named '"HAG’ is added to
the point cloud.
See Also

triangulate transform_ with

Examples

f <- system.file("extdata", "Topography.las", package="lasR")
pipeline <- reader_las() + normalize() + write_las()
exec(pipeline, on = f)

pit_£fill Pits and spikes filling

Description

Pits and spikes filling for raster. Typically used for post-processing CHM. This algorithm
is from St-Onge 2008 (see reference).

24 pit_ fill
Usage
pit_fill(
raster,
lap_size = 3L,
thr_lap = 0.1,
thr_spk = -0.1,
med_size = 3L,
dil_radius = OL,
ofile = temptif ()
)
Arguments
raster LASRalgorithm. A stage that produces a raster.
lap_size integer. Size of the Laplacian filter kernel (integer value, in pixels).
thr_lap numeric. Threshold Laplacian value for detecting a cavity (all values
above this value will be considered a cavity). A positive value.
thr_spk numeric. Threshold Laplacian value for detecting a spike (all values below
this value will be considered a spike). A negative value.
med_size integer. Size of the median filter kernel (integer value, in pixels).

dil_radius

integer. Dilation radius (integer value, in pixels).

ofile character. Full outputs are always stored on disk. If ofile = "" then
the stage will not store the result on disk and will return nothing. It will
however hold partial output results temporarily in memory. This is useful
for stage that are only intermediate stage.
Value

This stage produces a raster. The path provided to ‘ofile‘ is expected to be “tif* or any
other format supported by GDAL.
References

St-Onge, B., 2008. Methods for improving the quality of a true orthomosaic of Vexcel Ul-
traCam images created using alidar digital surface model, Proceedings of the Silvilaser 2008,
Edinburgh, 555-562. https://citeseerx.ist.psu.edu/document?repid=repl&type=pdf&doi=81365288221{3ac34b51a

Examples

f <- system.file("extdata", "MixedConifer.las", package="lasR")

reader <- reader_las(filter = keep_first())
tri <- triangulate()

chm <- rasterize(0.25, tri)

pit <- pit_£fill(chm)

u <- exec(reader + tri + chm + pit, on = f)

chm <-

ul[1]]

rasterize

sto <- u[[2]]

25

#terra: :plot(c(chm, sto), col = 1idR::height.colors(25))

rasterize

Rasterize a point cloud

Description

Rasterize a point cloud using different approaches. This stage does not modify the point
cloud. It produces a derived product in raster format.

Usage

rasterize(res, operators = "max", filter = "", ofile = temptif(), ...)

Arguments

res

operators

filter

ofile

Value

numeric. The resolution of the raster. Can be a vector with two resolu-
tions. In this case it does not correspond to the x and y resolution but to
a buffered rasterization. (see section 'Buffered’ and examples)

7 A

Can be a character vector. "min”, "max” and ”count” are accepted as
well as many others (see section ’Operators’). Can also rasterize a trian-
gulation if the input is a LASRalgorithm for triangulation (see examples).
Can also be a user-defined expression (see example and section 'Opera-
tors’).

the 'filter’ argument allows filtering of the point-cloud to work with points
of interest. The available filters are those from LASIib and can be found
by running filter usage. For a given stage when a filter is applied, only
the points that meet the criteria are processed. The most common strings
are "-keep_ first”, ”-keep_ class 2”, "drop_z_below 2”. For more details
see filters.

character. Full outputs are always stored on disk. If ofile = "" then
the stage will not store the result on disk and will return nothing. It will
however hold partial output results temporarily in memory. This is useful
for stage that are only intermediate stage.

default_value numeric. When rasterizing with an operator and a filter
(e.g. ~keep_z_above 2) some pixels that are covered by points may no
longer contain any point that pass the filter criteria and are assigned NA.
To differentiate NAs from non covered pixels and NAs from covered pixels
without point that pass the filter, the later case can be assigned another
value such as 0.

This stage produces a raster. The path provided to ‘ofile‘ is expected to be “tif* or any
other format supported by GDAL.

26 rasterize

Operators

If operators is a string or a vector of strings: read metric_engine to see the possible strings
Below are some examples of valid calls:

rasterize(10, c("max", "count", "i_mean", "z_p95"))
rasterize(10, c("z_max", "c_count", "intensity_mean", "p95"))

If operators is an R user-defined expression, the function should return either a vector of
numbers or a list containing atomic numbers. To assign a band name to the raster, the
vector or the 1ist must be named accordingly. The following are valid operators:

f = function(x) { return(mean(x)) }

g = function(x,y) { return(c(avg = mean(x), med = median(y))) }
h = function(x) { return(list(a = mean(x), b = median(x))) }
rasterize(10, f(Intensity))

rasterize(10, g(Z, Intensity))

rasterize(10, h(Z))

Buffered

If the argument res is a vector with two numbers, the first number represents the resolu-
tion of the output raster, and the second number represents the size of the windows used
to compute the metrics. This approach is called Buffered Area Based Approach (BABA).

In classical rasterization, the metrics are computed independently for each pixel. For ex-
ample, predicting a resource typically involves computing metrics with a 400 square meter
pixel, resulting in a raster with a resolution of 20 meters. It is not possible to achieve a
finer granularity with this method.

However, with buffered rasterization, it is possible to compute the raster at a resolution of
10 meters (i.e., computing metrics every 10 meters) while using 20 x 20 windows for metric
computation. In this case, the windows overlap, essentially creating a moving window effect.

This option does not apply when rasterizing a triangulation, and the second value is not
considered in this case.

Examples

f <- system.file("extdata", "Topography.las", package="lasR")
read <- reader_las()

tri <- triangulate(filter = keep_ground())

dtm <- rasterize(l, tri) # input is a triangulation stage
avgi <- rasterize(10, mean(Intensity)) # input is a user expression
chm <- rasterize(2, "max") # input is a character vector
pipeline <- read + tri + dtm + avgi + chm

ans <- exec(pipeline, on = f)

ans[[1]]

ans[[2]]

ans [[3]]

reader las 27

Demonstration of buffered rasterization

A good resolution for computing point density is 5 meters.
cO0 <- rasterize(5, "count")

Computing point density at too fine a resolution doesn't make sense since there is

either zero or one point per pixel. Therefore, producing a point density raster with

a 2 m resolution is not feasible with classical rasterization.
cl <- rasterize(2, "count")

Using a buffered approach, we can produce a raster with a 2-meter resolution where
the metrics for each pixel are computed using a 5-meter window.
c2 <- rasterize(c(2,5), "count")

pipeline = read + cO + cl1 + c2

res <- exec(pipeline, on = f)

terra::plot(res[[1]]1/25) # divide by 25 to get the density
terra::plot(res[[2]]1/4) # divide by 4 to get the density
terra::plot(res[[3]]1/25) # divide by 25 to get the density

reader_las Initialize the pipeline

Description

This is the first stage that must be called in each pipeline. The stage does nothing and re-
turns nothing if it is not associated to another processing stage. It only initializes the
pipeline. reader_las() is the main function that dispatches into to other functions.
reader_las_coverage() processes the entire point cloud. reader_las_circles() and
reader_las_rectangles() read and process only some selected regions of interest. If the
chosen reader has no options i.e. using reader_las() it can be omitted.

Usage

reader_las(filter = "", ...)
reader_las_coverage(filter = "", ...)
reader_las_circles(xc, yc, r, filter = "", ...)

reader_las_rectangles(xmin, ymin, xmax, ymax, filter = "", ...)

Arguments

filter the "filter’ argument allows filtering of the point-cloud to work with points
of interest. The available filters are those from LASIlib and can be found
by running filter_usage. For a given stage when a filter is applied, only
the points that meet the criteria are processed. The most common strings

28

region__growing

are "-keep_ first”, 7-keep_ class 2”, "drop_z_below 2”. For more details
see filters.
passed to other readers
Xc, yC, r numeric. Circle centres and radius or radii.
xmin, ymin, xmax, ymax
numeric. Coordinates of the rectangles

Examples

f <- system.file("extdata", "Topography.las", package = "lasR")

pipeline <- reader_las() + rasterize(10, "zmax")
ans <- exec(pipeline, on = f)
terra::plot(ans)

pipeline <- reader_las(filter = keep_z_above(1.3)) + rasterize(10, "zmean")
ans <- exec(pipeline, on = f)
terra::plot(ans)

read_las() with no option can be omitted
ans <- exec(rasterize(10, "zmax"), on = f)
terra::plot(ans)

Perform a query and apply the pipeline on a subset

pipeline = reader_las_circles(273500, 5274500, 20) + rasterize(2, "zmax")
ans <- exec(pipeline, on = f)

terra::plot(ans)

Perform a query and apply the pipeline on a subset with 1 output files per query
ofile = pasteO(tempdir(), "/*_chm.tif")

pipeline = reader_las_circles(273500, 5274500, 20) + rasterize(2, "zmax", ofile = ofile)
ans <- exec(pipeline, on = f)

terra::plot(ans)

region_growing Region growing

Description

Region growing for individual tree segmentation based on Dalponte and Coomes (2016)
algorithm (see reference). Note that this stage strictly performs segmentation, while the
original method described in the manuscript also performs pre- and post-processing tasks.
Here, these tasks are expected to be done by the user in separate functions.

Usage

region_growing(
raster,
seeds,

region__growing 29

th_tree 2,
th_seed = 0.45,
th_cr = 0.55,
max_cr = 20,
ofile = temptif ()

)
Arguments
raster LASRalgoritm. A stage producing a raster.
seeds LASRalgoritm. A stage producing points used as seeds.
th_tree numeric. Threshold below which a pixel cannot be a tree. Default is 2.
th_seed numeric. Growing threshold 1. See reference in Dalponte et al. 2016.

A pixel is added to a region if its height is greater than the tree height
multiplied by this value. It should be between 0 and 1. Default is 0.45.

th_cr numeric. Growing threshold 2. See reference in Dalponte et al. 2016. A
pixel is added to a region if its height is greater than the current mean
height of the region multiplied by this value. It should be between 0 and
1. Default is 0.55.

max_cr numeric. Maximum value of the crown diameter of a detected tree (in
data units). Default is 20. BE CAREFUL this algorithm exists in the
1idR package and this parameter is in pixels in 1idR.

ofile character. Full outputs are always stored on disk. If ofile = "" then
the stage will not store the result on disk and will return nothing. It will
however hold partial output results temporarily in memory. This is useful
for stage that are only intermediate stage.

Value

This stage produces a raster. The path provided to ‘ofile‘ is expected to be “tif* or any
other format supported by GDAL.

References

Dalponte, M. and Coomes, D. A. (2016), Tree-centric mapping of forest carbon density
from airborne laser scanning and hyperspectral data. Methods Ecol Evol, 7: 1236-1245.
doi:10.1111/2041-210X.12575.

Examples

f <- system.file("extdata", "MixedConifer.las", package="lasR")

reader <- reader_las(filter = keep_first())
chm <- rasterize(l, "max")

1mx <- local_maximum_raster (chm, 5)

tree <- region_growing(chm, 1lmx, max_cr = 10)
u <- exec(reader + chm + Imx + tree, on = f)

terra::plot(u$rasterize)

30

plot(u$local_maximum, add = T, pch = 19, cex = 0.5)
terra::plot(u$region_growing, col = rainbow(150))
plot(u$local_maximum, add = T, pch = 19, cex = 0.5)

sampling voxel

sampling_voxel Sample the point cloud

Description

Sample the point cloud, keeping one random point per pixel or per voxel or perform a
poisson sampling. This stages modify the point cloud in the pipeline but do not produce

any output.
Usage
sampling_voxel(res = 2, filter = "", ...)
sampling_pixel(res = 2, filter = "", ...)
sampling poisson(distance = 2, filter = "", ...)
Arguments
res numeric. pixel/voxel resolution
filter the "filter’ argument allows filtering of the point-cloud to work with points
of interest. The available filters are those from LASIlib and can be found
by running filter usage. For a given stage when a filter is applied, only
the points that meet the criteria are processed. The most common strings
are "-keep_ first”, 7-keep_ class 2”, "drop_z_below 2”. For more details
see filters.
unused
distance numeric. Minimum distance between points for poisson sampling.
Value

This stage transforms the point cloud in the pipeline. It consequently returns nothing.

Examples

f <- system.file("extdata", "Topography.las", package="lasR")

read <- reader_las()

vox <- sampling_voxel(5)

write <- write_las()

pipeline <- read + vox + write
exec(pipeline, on = f)

set_ crs 31

set_crs Set the CRS of the pipeline

Description

Assign a CRS in the pipeline. This stage does not reproject the data. It assigns a CRS. This
stage affects subsequent stages of the pipeline and thus should appear close to reader_ las
to assign the correct CRS to all stages.

Usage

set_crs(x)

Arguments

X integer or string. EPSG code or WKT string understood by GDAL

Examples

expected usage
hmax = rasterize(10, "max")
pipeline = reader_las() + set_crs(2949) + hmax

fancy usages are working as expected. The .tif file is written with a CRS, the .gpkg file with
another CRS and the .las file with yet another CRS.
pipeline = set_crs(2044) + hmax + set_crs(2004) + local_maximum(5) + set_crs(2949) + write_las()

set_exec_options Set global processing options

Description

Set global processing options for the exec function. By default, pipelines are executed
without a progress bar, processing one file at a time sequentially. The following options can
be passed to the exec() function in four ways. See details.

Usage

set_exec_options(
ncores = NULL,
progress = NULL,
buffer = NULL,
chunk = NULL,

unset_exec_option()

32 set__exec__options

Arguments
ncores An object returned by one of sequential (), concurrent_points(), concurrent_files(),
or nested(). See multithreading. If NULL the default is concurrent_points(half_cores()).
If a simple integer is provided it corresponds to concurrent_files(ncores).
progress boolean. Displays a progress bar.
buffer numeric. Each file is read with a buffer. The default is NULL, which
does not mean that the file won’t be buffered. It means that the internal
routine knows if a buffer is needed and will pick the greatest value between
the internal suggestion and this value.
chunk numeric. By default, the collection of files is processed by file (chunk =
NULL or chunk = 0). It is possible to process in arbitrary-sized chunks.
This is useful for e.g., processing collections with large files or processing
a massive copc file.
Other internal options not exposed to users.
Details

There are 4 ways to pass processing options, and it is important to understand the prece-
dence rules:

The first option is by explicitly naming each option. This option is deprecated and used
for convenience and backward compatibility.

exec(pipeline, on = f, progress = TRUE, ncores = 8)

The second option is by passing a 1list to the with argument. This option is more explicit
and should be preferred. The with argument takes precedence over the explicit arguments.

exec(pipeline, on = f, with = list(progress = TRUE, chunk = 500))

The third option is by using a LAScatalog from the 1idR package. A LAScatalog already
carries some processing options that are respected by the lasR package. The options from
a LAScatalog take precedence.

exec(pipeline, on = ctg, ncores = 4)

The last option is by setting global processing options. This has global precedence and is
mainly intended to provide a way for users to override options if they do not have access to
the exec () function. This may happen when a developer creates a function that executes
a pipeline internally, and users cannot provide any options.

set_exec_options(progress = TRUE, ncores = concurrent_files(2))
exec(pipeline, on = f)

See Also

multithreading

sort__points 33

sort_points Sort points in the point cloud

Description

This stage sorts the points by scanner channel, GPStime, and return number in order to
maximize LAZ compression. An optional second sorting step can be added to also sort
points spatially. In this case, a grid of 50 meters is applied, and points are sorted by
scanner channel, GPSTime, and return number within each cell of the grid. This increases
data locality, speeds up spatial queries, but may slightly increases the final size of the files
when compressed in LAZ format compared to the optimal compression.

Usage

sort_points(spatial = TRUE)

Arguments

spatial Boolean indicating whether to add a spatial sorting stage.

Value

This stage transforms the point cloud in the pipeline. It consequently returns nothing.

Examples

f <- system.file("extdata", "Topography.las", package="lasR")
exec(sort_points(), on = f)

stop_if_outside Stop the pipeline if a conditionally

Description

Stop the pipeline conditionally. The stages after a ‘stop__if* stage are skipped if the condi-
tion is met. This allows to process a subset of the dataset of to skip some stages condition-
ally. This DOES NOT stop the computation. In only breaks the pipeline for the current
file/chunk currently processed. (see exemple)

Usage

stop_if_outside(xmin, ymin, xmax, ymax)

Arguments

xmin, ymin, xmax, ymax
numeric. bounding box

34 summarise

Examples

Collection of 4 files
f <- system.file("extdata", "bcts/", package="lasR")

This bounding box encompasses only one of the four files
stopif = stop_if_outside (884800, 620000, 885400, 629200)

read = reader_las()

hll = hulls()
tri = triangulate(filter = keep_ground())
dtm = rasterize(l, tri)

reads the 4 files but 'tri' and 'dtm' are computed only for one file because stopif
allows to escape the pipeline outside the bounding box

pipeline = read + hll + stopif + tri + dtm

ansl <- exec(pipeline, on = f)

plot(ansi$hulls$geom, axes = TRUE)

terra::plot(ansi$rasterize, add = TRUE)

stopif can be applied before read. Only one file will actually be read and processed
pipeline = stopif + read + hll + tri + dtm

ans2 <- exec(pipeline, on = f)

plot(ans2$hulls$geom, axes = TRUE)

terra::plot(ansi$rasterize, add = TRUE, legend = FALSE)

summarise Summary

Description

Summarize the dataset by counting the number of points, first returns and other metrics
for the entire point cloud. It also produces an histogram of Z and Intensity attributes for
the entiere point cloud. It can also compute some metrics for each file or chunk with the
same metric engine than rasterize. This stage does not modify the point cloud. It produces
a summary as a list.

Usage

summarise(zwbin = 2, iwbin = 50, metrics = NULL, filter = "")

Arguments

zwbin, iwbin numeric. Width of the bins for the histograms of Z and Intensity.

metrics Character vector. "min”, "max” and “count” are accepted as well as many

others (see metric_engine). If NULL nothing is computed. If something
is provided these metrics are computed for each chunk loaded. A chunk
might be a file but may also be a plot (see examples).

temporary_ files 35

filter the “filter’ argument allows filtering of the point-cloud to work with points
of interest. The available filters are those from LASIlib and can be found
by running filter_usage. For a given stage when a filter is applied, only
the points that meet the criteria are processed. The most common strings
are 7-keep_ first”, 7-keep_ class 27, "drop_z_below 2”. For more details
see filters.

Examples

f <- system.file("extdata", "Topography.las", package="lasR")
read <- reader_las()

pipeline <- read + summarise()

ans <- exec(pipeline, on = f)

ans

Compute metrics for each plot

read = reader_las_circles(c(273400, 273500), c(5274450, 5274550), 11.28)
metrics = summarise(metrics = c("z_mean", "z_p95", "i_median", "count"))
pipeline = read + metrics

ans = exec(pipeline, on = f)

ans$metrics

temporary_files Temporary files

Description

Convenient functions to create temporary file with a given extension.

Usage

temptif ()
tempgpkg ()
tempshp ()
templas ()

templaz()

Value
string. Path to a temporary file.

Examples

tempshp ()
templaz ()

36 transform_with
tools Tools inherited from base R
Description
Tools inherited from base R
Usage
S3 method for class 'LASRalgorithm'
print(x, ...)
S3 method for class 'LASRpipeline'
print(x, ...)
S3 method for class 'LASRpipeline'
el + e2
S3 method for class 'LASRpipeline’
c(...)
Arguments
x, el, e2 lasR objects
lasR objects. Is equivalent to +
Examples
algol <- rasterize(l, "max")
algo2 <- rasterize(4, "min")
print(algol)

pipeline <- algol + algo2

print (pipeline)

transform_with

Transform a point cloud using another stage

Description

This stage uses another stage that produced a Delaunay triangulation or a raster and
performs an operation to modify the point cloud. This can typically be used to build a
normalization stage This stage modifies the point cloud in the pipeline but does not produce

any output.

Usage

transform_with(stage, operator = "-", store_in_attribute = "")

triangulate 37

Arguments
stage LASRpipeline. A stage that produces a triangulation or a raster.
operator string. -’ and '+’ are supported.

store_in_attribute
string. Use an extra bytes attribute to store the result.
Value

This stage transforms the point cloud in the pipeline. It consequently returns nothing.

See Also

triangulate write_las

Examples

f <- system.file("extdata", "Topography.las", package="lasR")

There is a normalize pipeline in lasR but let's create one almost equivalent
mesh <- triangulate(filter = keep_ground())

trans <- transform_with(mesh)

pipeline <- mesh + trans + write_las()

ans <- exec(pipeline, on = f)

triangulate Delaunay triangulation

Description

Delaunay triangulation. Can be used to build a DTM, a CHM, normalize a point cloud, or
any other application. This stage is typically used as an intermediate process without an
output file. This stage does not modify the point cloud.

Usage
triangulate(max_edge = 0, filter = "", ofile = "", use_attribute = "Z")
Arguments
max_edge numeric. Maximum edge length of a triangle in the Delaunay triangula-
tion. If a triangle has an edge length greater than this value, it will be
removed. If max_edge = 0, no trimming is done (see examples).
filter the “filter’ argument allows filtering of the point-cloud to work with points

of interest. The available filters are those from LASIib and can be found
by running filter_usage. For a given stage when a filter is applied, only
the points that meet the criteria are processed. The most common strings
are "-keep_ first”, ”-keep_ class 2”, "drop_z_below 2”. For more details
see filters.

38 write las

ofile character. Full outputs are always stored on disk. If ofile = "" then
the stage will not store the result on disk and will return nothing. It will
however hold partial output results temporarily in memory. This is useful
for stage that are only intermediate stage.

use_attribute character. By default the triangulation is performed on the coordinate
Z. Can also be the name of an extra bytes attribute such as "HAG’ if it
exists. Can also be 'Intensity’.

Value

This stage produces a vector. The path provided to ‘ofile‘ is expected to be ‘gpkg‘ or
any other format supported by GDAL. Vector stages may produce geometries with Z co-
ordinates. Thus, it is discouraged to store them in formats with no 3D support, such as
shapefiles.

Examples

f <- system.file("extdata", "Topography.las", package="lasR")

read <- reader_las()

tril <- triangulate(25, filter = keep_ground(), ofile = tempgpkg())
filter <- "-keep_last -keep_random_fraction 0.1"

tri2 <- triangulate(filter = filter, ofile = tempgpkg())

pipeline <- read + tril + tri2

ans <- exec(pipeline, on = f)

#plot(ans[[1]1)

#plot(ans[[2]1])

write_las Write LAS or LAZ files

Description

Write a LAS or LAZ file at any step of the pipeline (typically at the end). Unlike other
stages, the output won’t be written into a single large file but in multiple tiled files corre-
sponding to the original collection of files.

Usage

write_las(
ofile = pasteO(tempdir(), "/x.las"),
filter = "",
keep_buffer = FALSE

)

write lax 39

Arguments
ofile character. Output file names. The string must contain a wildcard * so
the wildcard can be replaced by the name of the original tile and preserve
the tiling pattern. If the wildcard is omitted, everything will be written
into a single file. This may be the desired behavior in some circumstances,
e.g., to merge some files.
filter the "filter’ argument allows filtering of the point-cloud to work with points

of interest. The available filters are those from LASIlib and can be found
by running filter usage. For a given stage when a filter is applied, only
the points that meet the criteria are processed. The most common strings
are 7-keep_ first”, ”-keep_ class 27, "drop_z_below 2”. For more details
see filters.

keep_buffer bool. The buffer is removed to write file but it can be preserved.

Examples

f <- system.file("extdata", "Topography.las", package="lasR")

read <- reader_las()

tri <- triangulate(filter = keep_ground())

normalize <- tri + transform_with(tri)

pipeline <- read + normalize + write_las(pasteO(tempdir(), "/*_norm.las"))
exec(pipeline, on = f)

write_lax Wrrite spatial indexing .laz files

Description

Creates a .lax file for each .las or .1laz file of the processed datase. A .lax file contains spa-
tial indexing information. Spatial indexing drastically speeds up tile buffering and spatial
queries. In lasR, it is mandatory to have spatially indexed point clouds, either using .lax
files or .copc.laz files. If the processed file collection is not spatially indexed, a write_lax()
file will automatically be added at the beginning of the pipeline (see Details).

Usage

write_lax(embedded = FALSE, overwrite = FALSE)

Arguments
embedded boolean. A .lax file is an auxiliary file that accompanies its corresponding
las or laz file. A .lax file can also be embedded within a laz file to produce
a single file.
overwrite boolean. This stage does not create a new spatial index if the corre-

sponding point cloud already has a spatial index. If TRUE, it forces the
creation of a new one. copc.laz files are never reindexed with lax files.

40 write__vpc

Details

When this stage is added automatically by lasR, it is placed at the beginning of the pipeline,
and las/laz files are indexed on-the-fly when they are used. The advantage is that users do
not need to do anything; it works transparently and does not delay the processing. The
drawback is that, under this condition, the stage cannot be run in parallel. When this
stage is explicitly added by the users, it can be placed anywhere in the pipeline but will
always be executed first before anything else. All the files will be indexed first in parallel,
and then the actual processing will start. To avoid overthinking about how it works, it is
best and simpler to run exec(write_lax(), on = files) on the non indexed point cloud
before doing anything with the point cloud.

Examples

Not run:
exec(write_lax(), on = files)

End (Not run)

write_vpc Write a Virtual Point Cloud

Description

Borrowing the concept of virtual rasters from GDAL, the VPC file format references other
point cloud files in virtual point cloud (VPC)

Usage

write_vpc(ofile, absolute_path = FALSE, use_gpstime = FALSE)

Arguments

ofile character. The file path with extension .vpc where to write the virtual
point cloud file

absolute_path boolean. The absolute path to the files is stored in the tile index file.

use_gpstime logical. To fill the datetime attribute in the VPC file, it uses the year and
day of year recorded in the header. These attributes are usually NOT
relevant. They are often zeroed and the official signification of these at-
tributes corresponds to the creation of the LAS file. There is no guaran-
tee that this date corresponds to the acquisition date. If use_gpstime =
TRUE, it will use the gpstime of the first point recorded in each file to com-
pute the day and year of acquisition. This works only if the GPS time is
recorded as Adjusted Standard GPS Time and not with GPS Week Time.

References

https://www.lutraconsulting.co.uk/blog/2023/06/08/virtual-point-clouds/
https://github.com/PDAL/wrench/blob/main/vpc-spec.md

https://www.lutraconsulting.co.uk/blog/2023/06/08/virtual-point-clouds/
https://github.com/PDAL/wrench/blob/main/vpc-spec.md

write__vpc

Examples
Not run:
pipeline = write_vpc("folder/dataset.vpc")
exec(pipeline, on = "folder")

End (Not run)

Index

+.LASRpipeline (tools), 36
+.laslibfilter (filters), 13

add_extrabytes, 3
add_rgb, 4

c.LASRpipeline (tools), 36
callback, 5

chm, 7

classify_with_csf, 7
classify_with_ivf, 9
classify_with_sor, 10
concurrent_files (multithreading), 21
concurrent_points (multithreading),

21

delete_points, 10

drop_class (filters), 13
drop_duplicates (filters), 13
drop_first (filters), 13
drop_ground (filters), 13
drop_noise (filters), 13
drop_z_above (filters), 13
drop_z_below (filters), 13
dtm, 11

exec, 12, 31

filter_usage, &8, 10, 14, 19, 25, 27, 30,
35, 37, 39

filter_usage (filters), 13

filter_with_grid, 14

filters, 8, 10, 13, 14, 19, 25, 28, 30, 35,
37, 39

focal, 15

geometry_features, 16
get_parallel_strategy
(multithreading), 21

half_cores (multithreading), 21

42

has_omp_support (multithreading), 21
hulls, 17

keep_class (filters), 13

keep_first (filters), 13
keep_ground (filters), 13
keep_ground_and_water (filters), 13
keep_noise (filters), 13
keep_z_above (filters), 13
keep_z_below (filters), 13

lasR (lasR-package), 3

lasR-package, 3

load_raster, 18

local_maximum, 18
local_maximum_raster (local_mazimum),

18

metric_engine, 20, 26, 34
multithreading, 12, 21, 32

ncores (multithreading), 21
nested (multithreading), 21
normalize, 23

pit_fill, 18, 23
print.laslibfilter (filters), 13
print.LASRalgorithm (tools), 36
print.LASRpipeline (tools), 36

rasterize, 7, 11, 20, 25, 34

reader_las, 27, 31

reader_las_circles (reader_las), 27

reader_las_coverage (reader_las), 27

reader_las_rectangles (reader_las),
27

region_growing, 28

sampling_pixel (sampling_wvozel), 30
sampling_poisson (sampling_vozel), 30
sampling_voxel, 30

INDEX

sequential (multithreading), 21
set_crs, 31
set_exec_options, 12, 31
set_parallel_strategy
(multithreading), 21
sort_points, 33
stop_if_outside, 33
summarise, 20, 34

tempgpkg (temporary_files), 35
templas (temporary_files), 35
templaz (temporary_files), 35
temporary_files, 35

tempshp (temporary_files), 35
temptif (temporary_files), 35
tools, 36
transform_with, 18, 23, 36
triangulate, 7, 11, 17, 23, 37, 37

unset_exec_option (set_ezec_options),
31

unset_parallel_strategy
(multithreading), 21

write_las, 0, 37, 38
write_lax, 39
write_vpc, 40

43

	lasR-package
	add_extrabytes
	add_rgb
	callback
	chm
	classify_with_csf
	classify_with_ivf
	classify_with_sor
	delete_points
	dtm
	exec
	filters
	filter_with_grid
	focal
	geometry_features
	hulls
	load_raster
	local_maximum
	metric_engine
	multithreading
	normalize
	pit_fill
	rasterize
	reader_las
	region_growing
	sampling_voxel
	set_crs
	set_exec_options
	sort_points
	stop_if_outside
	summarise
	temporary_files
	tools
	transform_with
	triangulate
	write_las
	write_lax
	write_vpc
	Index

