Package: lasR 0.13.1

Jean-Romain Roussel

lasR: Fast and Pipeable Airborne LiDAR Data Tools

Fast and pipeable airborne lidar processing tools. Read/write 'las' and 'laz' files, computation of metrics in area based approach, point filtering, normalization, individual tree segmentation and other manipulations in a powerful and versatile processing chain.

Authors:Jean-Romain Roussel [aut, cre, cph], Martin Isenburg [cph], Benoît St-Onge [cph], Niels Lohmann [cph], Volodymyr Bilonenko [cph], State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing Science and Engineering, Beijing Normal University [cph], Authors of Eigen [cph]

lasR_0.13.1.tar.gz
lasR_0.13.1.zip(r-4.5)lasR_0.13.1.zip(r-4.4)lasR_0.13.1.zip(r-4.3)
lasR_0.13.1.tgz(r-4.4-x86_64)lasR_0.13.1.tgz(r-4.4-arm64)lasR_0.13.1.tgz(r-4.3-x86_64)lasR_0.13.1.tgz(r-4.3-arm64)
lasR_0.13.1.tar.gz(r-4.5-noble)lasR_0.13.1.tar.gz(r-4.4-noble)
lasR.pdf |lasR.html
lasR/json (API)
NEWS

# Install 'lasR' in R:
install.packages('lasR', repos = c('https://r-lidar.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/r-lidar/lasr/issues

Uses libs:
  • gdal– Geospatial Data Abstraction Library
  • c++– GNU Standard C++ Library v3
  • openmp– GCC OpenMP (GOMP) support library

On CRAN:

gdalcppopenmp

6.50 score 10 stars 25 scripts 78 exports 0 dependencies

Last updated 2 hours agofrom:07f25f83d2. Checks:OK: 2 NOTE: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKDec 21 2024
R-4.5-win-x86_64NOTEDec 21 2024
R-4.5-linux-x86_64OKDec 21 2024
R-4.4-win-x86_64NOTEDec 21 2024
R-4.4-mac-x86_64NOTEDec 21 2024
R-4.4-mac-aarch64NOTEDec 21 2024
R-4.3-win-x86_64NOTEDec 21 2024
R-4.3-mac-x86_64NOTEDec 21 2024
R-4.3-mac-aarch64NOTEDec 21 2024

Exports:add_extrabytesadd_rgbcallbackchmclassify_with_csfclassify_with_ivfclassify_with_sorconcurrent_filesconcurrent_pointsdelete_grounddelete_noisedelete_pointsdrop_classdrop_duplicatesdrop_firstdrop_grounddrop_noisedrop_z_abovedrop_z_belowdtmexecfilter_with_gridfocalgeometry_featuresget_parallel_strategyhaghalf_coreshas_omp_supporthullsinfoinstall_cmd_toolskeep_classkeep_firstkeep_groundkeep_ground_and_waterkeep_noisekeep_z_abovekeep_z_belowload_rasterlocal_maximumlocal_maximum_rasterncoresnestednormalizepit_fillrasterizeread_cloudreaderreader_circlesreader_coveragereader_lasreader_las_circlesreader_las_coveragereader_las_rectanglesreader_rectanglesregion_growingsampling_pixelsampling_poissonsampling_voxelsequentialset_crsset_exec_optionsset_parallel_strategysort_pointsstop_if_outsidesummarisetempgpkgtemplastemplaztempshptemptiftransform_withtriangulateunset_exec_optionunset_parallel_strategywrite_laswrite_laxwrite_vpc

Dependencies:

Why lasR?

Rendered fromwhy.Rmdusingknitr::rmarkdownon Dec 21 2024.

Last update: 2024-07-04
Started: 2024-04-02

Tutorial

Rendered fromtutorial.Rmdusingknitr::rmarkdownon Dec 21 2024.

Last update: 2024-12-12
Started: 2024-04-02

Benchmarks of lasR vs. lidR

Rendered frombenchmarks.Rmdusingknitr::rmarkdownon Dec 21 2024.

Last update: 2024-11-17
Started: 2024-04-02

Parallel processing

Rendered frommultithreading.Rmdusingknitr::rmarkdownon Dec 21 2024.

Last update: 2024-12-12
Started: 2024-04-02

R stages

Rendered fromr-stages.Rmdusingknitr::rmarkdownon Dec 21 2024.

Last update: 2024-12-12
Started: 2024-06-02

Buffered Area Based Approach

Rendered frombaba.Rmdusingknitr::rmarkdownon Dec 21 2024.

Last update: 2024-04-03
Started: 2024-04-02

Readme and manuals

Help Manual

Help pageTopics
lasR: airborne LiDAR for forestry applicationslasR-package lasR
Add attributes to a LAS fileadd_extrabytes
Add RGB attributes to a LAS fileadd_rgb
Call a user-defined function on the point cloudcallback
Canopy Height Modelchm
Classify ground pointsclassify_with_csf
Classify noise pointsclassify_with_ivf
Classify noise pointsclassify_with_sor
Filter and delete pointsdelete_ground delete_noise delete_points
Deprecateddeprecated reader_las reader_las_circles reader_las_coverage reader_las_rectangles
Digital Terrain Modeldtm
Process the pipelineexec
Select highest or lowest pointsfilter_with_grid
Point Filters+.laslibfilter drop_class drop_duplicates drop_first drop_ground drop_noise drop_z_above drop_z_below filters keep_class keep_first keep_ground keep_ground_and_water keep_noise keep_z_above keep_z_below print.laslibfilter
Calculate focal ("moving window") values for each cell of a rasterfocal
Compute pointwise geometry featuresgeometry_features
Contour of a point cloudhulls
Print Information about the Point Cloudinfo
Use some lasR features from a terminalinstall_cmd_tools
Load a raster for later useload_raster
Local Maximumlocal_maximum local_maximum_raster
Metric enginemetric_engine
Parallel processing toolsconcurrent_files concurrent_points get_parallel_strategy half_cores has_omp_support multithreading ncores nested sequential set_parallel_strategy unset_parallel_strategy
Height Above Ground (HAG)hag normalize
Pits and spikes fillingpit_fill
Print Method for 'lasrcloud' Objectsprint.lasrcloud
Rasterize a point cloudrasterize
Read a point cloud in memoryread_cloud
Initialize the pipelinereader reader_circles reader_coverage reader_rectangles
Region growingregion_growing
Sample the point cloudsampling_pixel sampling_poisson sampling_voxel
Set the CRS of the pipelineset_crs
Set global processing optionsset_exec_options unset_exec_option
Sort points in the point cloudsort_points
Stop the pipeline if a conditionallystop_if_outside
Summarysummarise
Temporary filestempgpkg templas templaz temporary_files tempshp temptif
Tools inherited from base R+.LASRpipeline c.LASRpipeline print.LASRalgorithm print.LASRpipeline tools
Transform a Point Cloud Using Another Stagetransform_with
Delaunay triangulationtriangulate
Write LAS or LAZ fileswrite_las
Write spatial indexing .lax fileswrite_lax
Write a Virtual Point Cloudwrite_vpc